Global Asymptotic Stability of the Second-Order Nonlinear Difference Equation x<sub>n+1</sub>=a/x<sub>n</sub><sup>2</sup>+1/x<sub>n-1</sub>

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global asymptotic stability of a higher order rational difference equation

In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...

متن کامل

Global behaviour of a second order nonlinear difference equation

We describe the asymptotic behaviour and the stability properties of the solutions to the nonlinear second order difference equation xn+1 = xn−1 a + bxnxn−1 , n ≥ 0, for all values of the real parameters a, b, and any initial condition (x−1, x0) ∈ R .

متن کامل

Asymptotic Behavior of a Second-Order Fuzzy Rational Difference Equation

We study the qualitative behavior of the positive solutions of a second-order rational fuzzy difference equationwith initial conditions being positive fuzzy numbers, and parameters are positive fuzzy numbers. More precisely, we investigate existence of positive solutions, boundedness and persistence, and stability analysis of a second-order fuzzy rational difference equation. Some numerical exa...

متن کامل

Global asymptotic stability of the higher order equation

In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation, xn+1 = axn + bxn−k A + Bxn−k where a, b, A, B are all positive real numbers, k ≥ 1 is a positive integer, and the initial conditions x−k, x−k+1, ..., x0 are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotica...

متن کامل

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure Mathematics

سال: 2017

ISSN: 2160-7583,2160-7605

DOI: 10.12677/pm.2017.71003